Bradykinin acutely inhibits activity of the epithelial Na+ channel in mammalian aldosterone-sensitive distal nephron.

نویسندگان

  • Oleg Zaika
  • Mykola Mamenko
  • Roger G O'Neil
  • Oleh Pochynyuk
چکیده

Activation of the renal kallikrein-kinin system results in natriuresis and diuresis, suggesting its possible role in renal tubular sodium transport regulation. Here, we used patch-clamp electrophysiology to directly assess the effects of bradykinin (BK) on the epithelial Na(+) channel (ENaC) activity in freshly isolated split-opened murine aldosterone-sensitive distal nephrons (ASDNs). BK acutely inhibits ENaC activity by reducing channel open probability (P(o)) in a dose-dependent and reversible manner. Inhibition of B2 receptors with icatibant (HOE-140) abolished BK actions on ENaC. In contrast, activation of B1 receptors with the selective agonist Lys-des-Arg(9)-BK failed to reproduce BK actions on ENaC. This is consistent with B2 receptors playing a critical role in mediating BK signaling to ENaC. BK has little effect on ENaC P(o) when G(q/11) was inhibited with Gp antagonist 2A. Moreover, inhibition of phospholipase C (PLC) with U73122, but not saturation of cellular cAMP levels with the membrane-permeable nonhydrolysable cAMP analog 8-cpt-cAMP, prevents BK actions on ENaC activity. This argues that BK stimulates B2 receptors with subsequent activation of G(q/11)-PLC signaling cascade to acutely inhibit ENaC activity. Activation of BK signaling acutely depletes apical PI(4,5)P(2) levels. However, inhibition of Ca(2+) pump SERCA of the endoplasmic reticulum with thapsigargin does not prevent BK signaling to ENaC. Furthermore, caffeine, while producing a similar rise in [Ca(2+)](i) as in response to BK stimulation, fails to recapitulate BK actions on ENaC. Therefore, we concluded that BK acutely inhibits ENaC P(o) in mammalian ASDN via stimulation of B2 receptors and following depletion of PI(4,5)P(2), but not increases in [Ca(2+)](i).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Salt-dependent inhibition of epithelial Na+ channel-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin.

We have documented recently that bradykinin (BK) directly inhibits activity of the epithelial Na(+) channel (ENaC) via the bradykinin B2 receptor (B2R)-G(q/11)-phospholipase C pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R, B2R(-/-)) to probe a physiological role of BK cascade in regulation of ENaC in native tissue, aldosterone-sensiti...

متن کامل

Chronic angiotensin II infusion drives extensive aldosterone-independent epithelial Na+ channel activation.

The inability of mineralocorticoid receptor (MR) blockade to reduce hypertension associated with high angiotensin (Ang) II suggests direct actions of Ang II to regulate tubular sodium reabsorption via the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron. We used freshly isolated aldosterone-sensitive distal nephron from mice to delineate the synergism and primacy betw...

متن کامل

In Liddle Syndrome, Epithelial Sodium Channel Is Hyperactive Mainly in the Early Part of the Aldosterone-Sensitive Distal Nephron.

The epithelial sodium channel (ENaC) is rate limiting for Na(+) absorption in the aldosterone-sensitive distal nephron comprising the late distal convoluted tubule (DCT2), the connecting tubule (CNT), and the entire collecting duct. Liddle syndrome (pseudohyperaldosteronism), a severe form of salt-sensitive hypertension, is caused by gain-of-function mutations of ENaC, but the precise tubular s...

متن کامل

Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, p...

متن کامل

WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo.

Homeostasis of intravascular volume, Na(+), Cl(-), and K(+) is interdependent and determined by the coordinated activities of structurally diverse mediators in the distal nephron and the distal colon. The behavior of these flux pathways is regulated by the renin-angiotensin-aldosterone system; however, the mechanisms that allow independent modulation of individual elements have been obscure. Pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 300 5  شماره 

صفحات  -

تاریخ انتشار 2011